Using a Quasi-Potential Transformation for Modeling Diffusion Media in Polymer-Electrolyte Fuel Cells
نویسندگان
چکیده
In this paper, a quasi-potential approach along with conformal mapping is used to model the diffusion media of a polymer-electrolyte fuel cell. This method provides a series solution that is grid independent and only requires integration along a single boundary to solve the problem. The approach accounts for nonisothermal phenomena, two-phase flow, correct placement of the electronic potential boundary condition, and multilayer media. The method is applied to a cathode diffusion medium to explore the interplay between water and thermal management and performance, the impact of the rib-to-channel ratio, and the existence of diffusion under the rib and flooding phenomena.
منابع مشابه
Stochastic Modeling and Direct Simulation of the Diffusion Media for Polymer Electrolyte Fuel Cells
متن کامل
Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells
In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...
متن کاملModeling, Simulation and Characterization of Atomic Force Microscopy Measurements for Ionic Transport and Impedance in PEM Fuel Cells
The polymer electrolyte membrane fuel cell is a power source with the potential for reducing green-house gas emissions. Characterizing the electrolyte of a fuel cell is an important procedure for assessing the performance of the entire device. Atomic force microscopy (AFM) is one of the major instruments for such characterization, since it can be used for determining the surface potential and/o...
متن کاملModel Library of Polymer Electrolyte Membrane Fuel Cells for System Hardware and Control Design
The trade-offs among dynamic response, efficiency, and robustness to external factors are fundamental to the optimization of hardware and controls for fuel cell systems. No previously published model of polymer electrolyte membrane fuel cells (PEMFCs) has the capability to simultaneously provide dynamic modeling capabilities, a clear representation of physical configurations, adjustable fidelit...
متن کاملNumerical Simulation of Non-Uniform Gas Diffusion Layer Porosity Effect on Polymer Electrolyte Membrane Fuel Cell Performance
Gas diffusion layers are essential components of proton exchange membrane fuel cell since the reactants should pass through these layers. Mass transport in these layers is highly dependent on porosity. Many of simulations have assumed, for simplicity, the porosity of GDL is constant, but in practice, there is a considerable variation in porosity along gas diffusion layers. In the present study ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 70 شماره
صفحات -
تاریخ انتشار 2009